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ABSTRACT

Probabilistic forecasts of U.S. Drought Monitor (USDM) intensification over 2-, 4-, and 8-week time pe-

riods are developed based on recent anomalies in precipitation, evapotranspiration, and soil moisture. These

statistical forecasts are computed using logistic regression with cross validation. While recent precipitation,

evapotranspiration, and soil moisture do provide skillful forecasts, it is found that additional information on

the current state of the USDM adds significant skill to the forecasts. The USDM state information takes the

form of a metric that quantifies the ‘‘distance’’ from the next-higher drought category using a nondiscrete

estimate of the current USDM state. This adds skill because USDM states that are close to the next-higher

drought category are more likely to intensify than states that are farther from this threshold. The method

shows skill over most of the United States but is most skillful over the north-central United States, where the

cross-validated Brier skill score averages 0.20 for both 2- and 4-week forecasts. The 8-week forecasts are less

skillful in most locations. The 2- and 4-week probabilities have very good reliability. The 8-week probabilities,

on the other hand, are noticeably overconfident. For individual drought events, the method shows the most

skill when forecasting high-amplitude flash droughts and when large regions of the United States are expe-

riencing intensifying drought.

1. Introduction

Drought can impact the health and diversity of natural

ecosystems and severely reduce agricultural output in

regions that depend on rain-fed crops and forage. Be-

cause drought can take many forms through variations

in intensity and longevity (Wilhite and Glantz 1985), its

impact can also vary significantly for different socio-

economic groups. For example, severe drought that is

short in duration but occurs during critical crop yield

development stages can have a large impact on farm

production, yet have minimal impact on other stake-

holder groups that are less sensitive to short-term

drought. Even within the agricultural sector, impacts

can differ greatly because of varying exposure to

drought due to differences in soil type, crops, and agri-

cultural practices, among other factors. Extreme flash

drought events that rapidly develop over short time

periods (e.g., Svoboda et al. 2002; Mozny et al. 2012;

Otkin et al. 2013; Hunt et al. 2014), such as those that

occurred over large areas of the central United States in

2011 and 2012, can have an especially large impact be-

cause there is less time to prepare for its adverse effects.

Robust drought early warning systems capable of sup-

porting flash drought mitigation efforts necessitate the

development of methods that can produce reliable

subseasonal forecasts with frequent updates (Otkin

et al. 2015b).

Most drought forecasting systems, however, typically

provide seasonal forecasts that are updated each month

and thus do not provide sufficient temporal resolution to

capture the onset and intensification of flash drought.Corresponding author: David J. Lorenz, dlorenz@wisc.edu

JULY 2017 LORENZ ET AL . 1963

DOI: 10.1175/JHM-D-16-0067.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/12/21 06:33 PM UTC

mailto:dlorenz@wisc.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


This limits their utility for drought mitigation because it

can diminish the ability of vulnerable groups to imple-

ment proactive measures in a timely manner to lessen

the detrimental impacts of drought (e.g., Otkin et al.

2015b). Drought forecasts produced using output from

coupled ocean–land–atmosphere general circulation

models (e.g., Wood et al. 2002; Luo et al. 2007; Quan

et al. 2012; Yuan et al. 2013a,b; Bell et al. 2013; Pan et al.

2013; Dutra et al. 2014; McEvoy et al. 2016) provide

valuable information. For example, outputs from the

North AmericanMulti-Model Ensemble (Kirtman et al.

2014) have been used to forecast future drought (Yuan

andWood 2013; Mo and Lyon 2015; Thober et al. 2015).

However, this guidance has typically been for seasonal

time scales. To help address short-range forecasting

needs, the Climate Prediction Center (CPC) issues a

Monthly Drought Outlook product, but it is only up-

dated at monthly intervals. Statistical methods have also

been developed to predict future drought conditions

over different time scales (e.g., Steinemann 2003; Kim

et al. 2003; Mishra and Desai 2005, 2006; Sen and Boken

2005; Barros and Bowden 2008; Hwang and Carbone

2009; Özger et al. 2012).

A promising approach to produce subseasonal drought

predictions (e.g., from weeks to several months) is to use

temporal tendencies in drought indices sensitive to pre-

cipitation, temperature, soil moisture, or evapotranspi-

ration to identify regions with an increased risk for

drought development. Otkin et al. (2014, 2015a) showed

that drought was more likely to develop over subseasonal

time scales when a rapid change index (RCI), designed to

capture the rate of moisture stress change over short time

periods, indicated that moisture stress was rapidly in-

creasing. Case study and climatological analyses dem-

onstrated that this relationship was strongest across the

central and eastern United States in regions where flash

droughts occur more frequently. For example, during the

2012 flash drought, the RCI became strongly negative

across portions of the central United States more than a

month before the U.S. Drought Monitor (USDM;

Svoboda et al. 2002; Otkin et al. 2014) indicating that

drought was rapidly intensifying. This event resulted

primarily from natural variations in the weather rather

than external forcing due to sea surface temperatures,

and little to no warning of its rapid onset was evident in

traditional drought metrics, drought outlooks, or climate

model simulations (Kumar et al. 2013; Hoerling et al.

2014). These results suggest that new forecastingmethods

based on temporal tendencies of drought indices could

augment existing drought monitoring and forecasting

systems based on prognostic models.

In this two-part paper, we expand upon the method

described in Otkin et al. (2014, 2015a) by using more

sophisticated statistical tools to depict the current

drought state and to forecast the probabilistic likelihood

of future drought development in order to improve the

early warning of drought. In this paper (Part II), we

develop probabilistic forecasts of drought intensification

at 2-, 4-, and 8-week time periods using current trends in

precipitation, evapotranspiration, and soil moisture

anomalies. A key result of this paper is that incorpora-

tion of a continuous depiction (i.e., wetness/dryness is

measured on a continuum rather than as six discrete

dryness/drought classes) of the current USDM state

described in Lorenz et al. (2017, hereafter Part I)

greatly increases the forecast skill. We begin with a

description of the datasets used in the forecast system

(section 2). In section 3, we introduce the statistical

methodology, discuss how USDM state information is

incorporated as a predictor of the future state, and

demonstrate the impact of the USDM state predictor.

Results are presented in section 4 and conclusions in

section 5.

2. Datasets

a. Summary of standard predictors

The purpose of this study is to develop a methodology

for forecasting a gridded depiction of the USDM;

therefore, we focus on predictors that are available in

gridded form. The datasets are the same as those in Part I,

and the reader should look there for details. Briefly, the

following datasets are used to predict USDM: 1) the

CPC gridded analysis of daily precipitation (Higgins

et al. 2000); 2) the evaporative stress index (ESI;

Anderson et al. 1997, 2007); and 3) model average soil

moisture anomalies in the top 10, 100, and 200 cm of the

soil profile from phase 2 of the North American Land

DataAssimilation System (NLDAS-2; Xia et al. 2012a,b).

The data smoothing and the time of year (May–

September) are also like that in Part I. Unlike Part I, the

‘‘raw’’ precipitation anomalies are used rather than the

standardized precipitation index (SPI) because this

provides a slight increase in skill. In addition, because

we are predicting changes in the USDM rather than the

USDM state as in Part I, weekly anomalies are used here

rather than long-term composites ranging from 4 to

52 weeks as in Part I. This is because the time tendency

(or change) of a time series with variations at a range of

frequencies is necessarily of higher frequency than the

original time series. Therefore, long-term composites

work best for estimating theUSDM state and short-term

composites work best for predicting USDM changes.

The one exception to weekly anomalies is ESI, where

4-week composites are used to substantially reduce the

number of missing data.
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b. USDM state PDFs

In Part I, we developed a probabilistic estimate of the

current state of the USDM using the SPI and anomalies

in ESI and the NLDAS soil moisture averaged to the 10-,

100-, and 200-cm layers. Each of these five fields was

composited over 4-, 8-, 12-, 16-, 20-, 26-, 39-, and

52-week periods before being used as predictors of

the current USDM state. The probabilities from this

method will be used to forecast the changes in the USDM

as described in section 3d. All USDM state probabilities

used in this study are cross validated, meaning that the

statistical models below do not use USDM state proba-

bilities that were fit on the period used for validation.

3. Methodology

a. Logistic regression

For this study, we develop probabilistic predictions of

drought intensification. Because the USDM is discrete,

predicting whether USDM intensifies or not over a

certain time period involves predicting a discrete yes/no

variable. For this study, we only predict whether the

USDM intensifies or not—we do not predict the mag-

nitude of the intensification (i.e., the USDM increases

by two drought categories). Also, we only predict in-

tensification of drought and not the amelioration of

drought. The method in this paper can easily be applied

to these alternative ‘‘events’’ by changing the definition

of the discrete yes/no variable (i.e., yes when drought

intensifies by two or more drought categories, otherwise

no). Standard methods such as multilinear regression

are not appropriate for predicting yes/no variables be-

cause linear regression assumes the errors follow a

normal distribution and linear regression does not ex-

clude the possibility of negative probabilities of in-

tensification or probabilities greater than 100%. Instead,

the natural statistical model for a discrete yes/no vari-

able is logistic regression. Unlike linear regression,

which minimizes the squared error between the pre-

dictand y and the weighted sum of the predictors

a0 1 a1x1 1 a2x2 1 a3x3 (where xj are the predictors and

aj are the regression coefficients), logistic regression

inserts the weighted sum of predictors into the logistic

function to predict the probability p that drought in-

tensification occurs:

p5L(a
0
1 a

1
x
1
1 a

2
x
2
1 a

3
x
3
1⋯) , (1)

where L(x) is the logistic function:

L(x)5
1

11 exp(2x)
. (2)

The logistic function goes from 0 to 1 as x goes from2‘
to ‘ and therefore ensures that the probability is be-

tween 0 and 1. The parameters (a0, a1, a2, a3, . . .) are fit

by maximum likelihood using iteratively weighted least

squares (Dobson and Barnett 2008).

b. Predictors and predictand

In this study, we predict the probability that the USDM

will intensify over 2-, 4-, and 8-week time periods after the

current week’s USDM value.1 Consider the 4-week pre-

dictions: if the USDM drought category exceeds the cur-

rent drought category during any point in the next 4weeks,

then the USDM has intensified; otherwise, it has not. The

same rule applies to the 2- and 8-week predictions. For the

logistic regression, weeks that intensify are given the value

1, and weeks that do not are given the value 0. Therefore,

the probabilities from (1) represent the probability of in-

tensification. For all statistics and analysis in this study, we

do not use weeks where the USDM is in the most intense

‘‘exceptional drought’’ categoryD4. Instead, we treat such

weeks as ‘‘missing data.’’ The reason is simply that the

prediction is trivial in this case because, by definition, the

USDM cannot be more intense.

The predictors include weekly precipitation anomalies

from themean seasonal cycle, the ESI time tendency, and

the soil moisture tendencies for three different soil layers:

0–10, 0–100, and 0–200cm. The tendencies are computed

from the difference in adjacent weeks. The ESI and soil

moisture tendencies are used because we are forecasting

the change in the USDM. Like the USDM, the ESI and

soil moisture are variables that measure the state of the

land surface; therefore, the change inUSDMis analogous

to a change in ESI and soil moisture. Precipitation, on

other hand, is not a state variable but is a ‘‘forcing’’ var-

iable that directly imposes a change on the state variables.

Therefore, the precipitation anomalies are used directly.

We also explored treating precipitation as a state variable

and ESI and soil moisture as forcing variables, and the

skill was degraded, as expected. The RCI of Otkin et al.

(2014, 2015a) was also considered, but the straightfor-

ward and more parsimonious ESI tendency performed

slightly better, so it was chosen.

Note that, unlike the USDM state estimate, which uses

wide range of composite periods (see section 2e), weekly

composites are used in this current study because the fo-

cus is onUSDMchanges over relatively short time scales.2

1 In other words, our data cutoff is Tuesday and the USDM is

released on Thursday. We predict intensification in the following

week (and beyond) compared to Thursday’s USDM.
2 To reduce missing data periods, ESI is composited over

4 weeks.
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To extend the time scale of the predictors, each of the

above fields is used at multiple time lags starting at the

present time and including the values for the past 1, 2, and

3 weeks. In other words, there are four precipitation

predictors that are staggered in time: the weekly mean

precipitation for the most recent time and the weekly

mean for each of the preceding weeks. This allows the

data to decide the best weighting of the different time lags.

For example, the method can empirically determine

whether the 1-week average is the best predictor (all re-

gression coefficients are zero except for lag 0), whether a

4-week average is best (the coefficients are equal for all

lags), or whether any other combination of weighting is

best. Time-lagged predictors are also used for each of the

following four fields: 1) the standardized ESI tendency

and the NLDAS soil moisture tendencies averaged from

the surface to 2) 10, 3) 100, and 4) 200 cm.

There are two additional predictors: one based on the

USDM state estimate from Part I and another based

on the climatological seasonal cycle of drought in-

tensification. The first additional predictor is described

in detail in section 3b. The second, the climatological

intensification, is used because some locations have a

preferred time of year when intensification is most likely

to occur. The calculation of the climatological in-

tensification is performed multiple times so that when we

validate the model for 2012, for example, the climatolog-

ical intensification is calculated only using the other years.

To reduce noise, the climatological intensification proba-

bility is smoothed in time by a Gaussian kernel of the

form: exp[20.5(t/s)2], where t is time and the constant s is

5 weeks. The 5 weeks was chosen because it was the

smallest value that appeared to remove most of the noise

in the seasonal cycle (estimated visually).

All predictors are standardized prior to the logistic

regression so that the size of the regression coefficients

can be used to gauge the impact of each predictor. With

five fields at four different time lags and two additional

predictors, the total number of predictors is 22.

c. Predictor selection

With multiple predictors, avoiding overfitting is es-

sential. The standard approach for determining the im-

portant predictors is to incrementally add individual

predictors with cross validation until skill decreases on

independent data. In Part I, we found that aggregating

predictors together into a single ‘‘master index’’ im-

proves skill over the individual predictor approach. In

that study, the predictors were linearly combined using

weights that were empirically calculated using non-

negative least squares (NNLS) regression. Unlike stan-

dard linear regression, the signs of the regression

coefficients are constrained to be greater than or equal

to zero. The advantage of the NNLS regression is its

regularization properties (Meinshausen 2013; Slawski

and Hein 2013), which penalize excessive complexity,

and therefore NNLS almost always shows better skill on

independent data.Moreover, NNLSwas easy to apply in

Part I because the sign of the true, physically based co-

efficients are known a priori (if the physically based

coefficient is negative, simply multiply the predictor

by 21). Note that with many predictors, NNLS re-

gression will result in nonzero weights for a subset of the

predictors, and the rest of the weights will be exactly

zero. In this respect, it is similar to the standard indi-

vidual predictor approach described above. In this pa-

per, the NNLS approach of Part I is modified slightly:

the nonnegativity constraint is imposed on the co-

efficients of logistic regression (a1, a2, a3, . . .) rather than

on the coefficients of linear regression.3 Also, in order to

avoid artificially inflating forecast skill, the coefficients

are calculated with cross validation. First, one year is

removed from the data. Second, all model coefficients

are fit using data from the remaining years. Next, skill is

calculated when applying the model to the year that was

left out. Finally, the process is repeated until all years

have a chance to be left out.

Part I also found that, given the relatively short

USDM record, aggregating surrounding points together

when fitting the statistical models improves the fit.While

it is true that nearby grid points may not have the same

relationship between the various predictors and USDM

intensification, the errors from the limited sample

(14 years of data) apparently dominate. The validation

of the model on the left-out year is still done on the

central grid point—it is only when fitting the model that

surrounding grid points are used. The surrounding grid

points are not given full weight; instead, the weight w

of a grid point in the analysis is given by a Gaussian

function:

w5 exp

"
2
1

2

(Dx)2 1 (Dy)2

(28)2

#
,

where Dx and Dy are the difference in longitude and

latitude, respectively, between the central grid point

and a surrounding grid point in degrees. The choice of 28
for the weighting function is a compromise value that

tends to perform the best on average.

3 Note that the nonnegativity constraint is not applied to the

intercept term a0 because the physically based sign is not known a

priori. Roughly, the intercept ‘‘scales’’ the probability so that the

time-mean probability is the right magnitude. We want freedom to

fit any mean probability; therefore, a0 has no constraints.
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In summary, we use standard logistic regression with

the following modifications: 1) a sign constraint on the

coefficients and 2) surrounding grid points are used for

model fitting (but not for model validation) in order to

increase sample size. In the next subsection, we explore

the best way to incorporate USDM state information as

an additional predictor. To motivate the USDM state

predictor methodology, we first show the preliminary re-

sults of applying the logistic regression with all predictors

except the state predictor. In Fig. 1, the cross-validated

Brier skill score (BSS) for the 2, 4, and 8-week USDM

intensification forecasts are shown. The cross valida-

tion is done by removing one year from the record,

training the model on the remaining years, and then

validating on the left-out year. For the validation,

goodness of fit is measured using the likelihood. This

process is repeated until all years have a turn to be re-

moved. The BSS measures the difference between the

predicted probability of a particular outcome and the

actual observed outcome relative to climatology (Wilks

2011). A value of one (zero) indicates perfect (no) skill.

The 2- and 4-week predictions have the most skill in the

north-central United States and the least skill in the

west and parts of the southeast. The 8-week predictions

have the most areas with no skill on independent data

(white) and the regions of largest skill are in the

Intermountain West.

d. USDM state predictor

An important result of this paper is that predictions of

future USDM are significantly improved given in-

formation about the current state of the USDM. This

additional information is more than simply the value of

the current drought category, but involves an estimate of

the ‘‘distance’’ to the next-higher drought category. For

example, suppose the USDM is in the ‘‘no drought’’

category. We show that it is useful to know whether

conditions are normal or extremely wet because recent

dry anomalies are much more likely to tip the former

state into drought than the latter. The development of a

methodology to more precisely characterize the state of

the USDM was described in Part I. Briefly, Part I de-

velops an empirical methodology for making a non-

discrete USDM index that is most consistent with the

time scales and processes of the actual USDM pre-

sented. In other words, Part I developed a USDM that

classifies wetness/dryness on a continuum rather than as

five discrete drought/dryness categories together with

the no drought designation. Anomalies in precipitation,

soil moisture, and evapotranspiration over a range of

different time scales are used as predictors to estimate

this continuous USDM. The actual discrete USDM can

be reconstructed from the continuous USDM by dis-

cretizing based on the 30th, 20th, 10th, 5th, and 2nd

percentiles. These are the explicit percentile thresholds

that the USDM uses to define the boundaries of the

drought categories from wettest to driest. Figure 2 is a

schematic showing the PDF of this hypothetical con-

tinuous version of the USDM and the five dryness/

drought categories. Figure 2a shows the ‘‘climatologi-

cal’’ distribution of USDM at a single grid point over all

times in the record. Part I then estimated the PDF of the

continuous USDM conditioned on SPI, ESI, and

FIG. 1. Cross-validated BSS for logistic regression without USDM

state information: (a) 2-, (b) 4-, and (c) 8-week forecast.
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NLDAS anomalies. Figures 2b and 2c show these con-

ditional distributions at two example times: t1 and t2.

Notice that the widths of the distributions at times t1 and

t2 are less than the climatological distribution because

the SPI, ESI, and NLDAS predictors add information

about the current state that constrains the range of

possible USDM drought categories. On the other hand,

also note that the PDFs do not precisely pinpoint the

true USDM category; instead, they allow for the in-

herent uncertainty in estimating USDM. The distribu-

tions at times t1 and t2 are both cases where the majority

of the PDF is in the USDM no drought category; how-

ever, the degree of certainty and the closeness to other

drought categories is much different in these two cases.

For example, at time t2 the integral of the PDF to the left

of the ‘‘abnormally dry’’ category threshold is nearly the

same as the integral over the entire domain. Therefore,

the values of the SPI, ESI, and NLDAS predictors imply

that theUSDM is almost certainly not in drought. For t1,

on the other hand, there is roughly a 50% chance that

the USDM is not in drought. Suppose we also know that

the actual USDM is in the no drought category at both t1
and t2, then, given an identical forecasted drying trend,

one would expect that the observed USDM is more

likely to intensify at time t1 than at time t2. This type

information will be exploited below to enhance USDM

predictability.

To exploit the information in the USDM state PDF,

we must determine a good way to quantify the ‘‘dis-

tance’’ to the next-higher drought category. One po-

tential distance metric is the probability h that the

USDM should be in a higher drought category based on

the continuousUSDMPDF (i.e., the integral of the PDF

below the current drought category). For example,

consider the situations in Figs. 2b and 2c and suppose the

current USDM category is no drought. The value of h is

the integral of the blue PDF to the left of the yellow line.

The state in Fig. 2b has a much higher value for h than

Fig. 2c, and therefore one expects it to be more likely to

intensify. Note that h depends on both the empirical

FIG. 2. (a) Schematic of the hypothetical, continuous USDM distribution (for all times).

(b) PDF estimate of USDMat time t1 given the information in the SPI, ESI, and NLDAS. Note

the width of the distribution is smaller than in (a) because SPI, ESI, andNLDAS help constrain

the range of USDM possibilities. (c) As in (b), but for time t2.
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PDF from Part I and the actual USDM state. So if in-

stead the current USDM category is ‘‘moderate

drought,’’ then the probabilities (i.e., h) in Fig. 2 would

be the integral to the left of the dark orange line, which is

less than the h value if USDM was in the no drought

category. This conforms to our expectations that, given

the same SPI, ESI, and NLDAS anomalies, a moderate

drought category is much less likely to intensify than no

drought category.

We now determine whether the state predictor h is

in a form that is consistent with logistic regression. First,

we calculate the two-dimensional histogram of all ob-

servations based on the ‘‘total’’ logistic regression pre-

dictor from the ‘‘no USDM state’’ model (section 3a) on

the x axis and the value of h on the y axis. We define

the total logistic regression predictor as the weighted

sum of all predictors inside the logistic function:

a0 1 a1x1 1 a2x2 1 a3x3⋯ [(1)]. For this analysis, the

4-week predictions are used and all grid points are ag-

gregated together for more robust statistics. The gray

shading in Fig. 3a shows the total number of observa-

tions, or cases, in each two-dimensional bin. The fact

that the density of observations is largest near the x axis

means that most of the time the probability that the

USDM should be in a higher drought category is rela-

tively small. This is consistent with the high skill scores

in Part I: the PDF is usually centered on the actual

USDM category, so h is ‘‘small.’’ To gauge the consis-

tency with logistic regression, we next compute the

empirical probability of intensification in each bin (i.e., p)

by calculating the ratio of the cases that intensify to the

total number of cases. Because the probability is non-

linearly related to the predictors in (1), the probability is

transformed by the inverse of the logistic function (called

the logit function):

q5L21(p)5 logit(p)5 log

�
p

12 p

�
, (3)

where q is the transformed probability. The value of q is

contoured in Fig. 3a (to focus on the robust results, q is

only contoured where there are at least 1000 observa-

tions). If the predictors are consistent with logistic re-

gression, then q should be a linear function of the

predictors or, in other words, the contours of q should be

straight lines that are equidistant from each other. Un-

fortunately, the q contours are significantly curved, and

moreover this curvature occurs near the highest density

of observations (i.e., the darkest gray). However, notice

that the probability of intensification (contours) does

depend on h, suggesting that there is skill and that

by transforming h with some nonlinear function, one

may make the q contours straight lines. After some

experimentation, we determined that the logit of h is a

predictor consistent with the form of logistic regression:

USDM state predictor5 log

�
h

12 h

�
. (4)

For example, Fig. 3b shows the empirical probabilities

as a function of the ‘‘no state’’ predictor and the logit of

h. The contours of q are equally spaced straight lines in

most regions, confirming that q is a linear function of the

logit of h. Also, it turns out that the logit function is an

increasing function of h, so all of the qualitative in-

terpretation and reasoning regarding the h predictor

FIG. 3. (a) Two-dimensional histogramof density of observations

as a function of the total predictor for the no-state logistic re-

gression (x axis) and the probability that the USDM should be in

higher drought category (i.e., h) (y axis; gray shading). Empirical

probability of intensification transformed by the logit function

(contours). (b) As in (a), but for the logit of h on the y axis.
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above also applies to the logit of h. We should also note

that the USDM state PDF used to calculate h in this

study is cross validated.

4. Results

a. Example showing effect of USDM state predictor

Here we describe an example (Fig. 4) in the north-

central United States from the 2012 drought that shows

the advantages of using the USDM state predictor. The

USDMon 21August 2012 shows extreme drought in the

southern portion of the domain with no drought over

portions ofMinnesota, northernWisconsin, and western

North Dakota (Fig. 4a). Regions that experienced

drought intensification over the next 4 weeks are shown

in orange in Fig. 4b. The probability of drought in-

tensification from the logistic regression without and

with the USDM state information is shown in Figs. 4c

and 4d, respectively. For reference, the boundaries of

the intensification regions are shown by the blue dashed

lines, and the spatial correlation between the probabil-

ities and the actual intensification pattern (i.e., Fig. 4b)

are shown in the top-right corner of Figs. 4c and 4d. For

these spatial correlations, the observed intensification

map is 1 where the USDM intensifies and 0 otherwise.

Also, the raw continuous probabilities are used rather

than values discretized by rounding to 0 or 1. In this way,

the degree of certainty in the forecasts is taken into

account.

The regression with state information performs sig-

nificantly better, particularly in delineating the bound-

aries between regions that intensify and those that do

not. For example, Fig. 4d shows an abrupt increase in

intensification probability as one travels from south to

north across Wisconsin. This abrupt transition coincides

with the boundary between the orange and white in

Fig. 4b. The regression with state information also cap-

tures these boundaries in northeastern South Dakota

and in North Dakota. Note that these abrupt transitions

occur at the boundaries of the USDM categories in

Fig. 4a. The reason is as follows: the USDM is a discrete

variable quantifying a continuous distribution, and

therefore, changes tend to occur via the expansion and

contraction of the discrete USDM contours surrounding

existing drought regions. Hence, changes in USDM

FIG. 4. (a) USDMon 21 Aug 2012. (b) Regions where USDM intensifies over the 4 weeks following 21 Aug 2012

are orange. (c) Probability of intensification from logistic regression with no USDM state information. The blue

dashed lines are the boundaries between the orange and white in (b). (d) As in (c), but for the logistic regression

with USDM state information.
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drought severity are most likely to occur close to the

current USDM contours. The USDM state variable

used here captures this effect because the probability

that the USDM should be in a higher drought category

(i.e., h) also tends to change abruptly at the USDM

contours because the limit of the integration of the

USDM PDF (Fig. 2) changes abruptly.

b. Probabilistic skill

The cross-validated BSSs of logistic regression with

USDM state information included as a predictor are

shown in Fig. 5 together with the change in BSSs relative

to the no-state predictor regression. The spatial pat-

terns of skill are similar to Fig. 1, with better skill in the

north-central United States for the 2- and 4-week fore-

casts, for example.While the patterns are similar, the skill

scores are improved at nearly all locations. Averaged

over the north-central United States where skill is highest

(388–468N, 878–1048W), the BSSs for both the 2- and

4-week forecasts improve from 0.15 to 0.20. Unlike the

rest of the domain, the skill in the westernUnited States

is largest for the 8-week forecasts. This is likely due to

the longer time scales of USDM variations in the west.

The standard BSS compares model skill to the ‘‘base-

line’’ skill of the climatology. We also tried persistence

as a baseline and found that the ‘‘skill’’ scores increase

everywhere significantly. These inflated skill scores are

not shown because climatology is a stricter metric in this

FIG. 5. Cross-validated BSS for logistic regression with USDM state information and change in BSS compared

with no USDM state information: (a) 2-week forecast, (b) BSS with state information minus BSS with no state

information for 2-week forecast, (c) 4-week forecast, (d) BSS with state information minus BSS with no state in-

formation for 4-week forecast, (e) 8-week forecast, and (f) BSS with state information minus BSS with no state

information for 8-week forecast.
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case. The standard BSS compares model skill to the

baseline skill of the climatology. We also tried persis-

tence as a baseline and found that the skill scores in-

crease everywhere significantly. These inflated skill

scores are not shown because climatology is a stricter

metric in this case.

The above results suggest that the USDM state in-

formation adds skill to the predictions; however, it is

possible that the no-state regression is not the most

skillful (and therefore meaningful) null hypothesis. For

example, perhaps the USDM state regression has more

skill because climatologically the no drought category is

broad while the other USDM categories are relatively

narrow. USDM categories that are narrow have less

distance to adjacent categories on average, so the

probability of increase is larger. Perhaps this is the effect

that the USDM forecasts are using to increase skill. To

test this hypothesis, we use the width of the current

USDM category (in percentiles) as a predictor. The BSS

for this new predictor, however, is verymuch like the no-

state regression, which suggests that the no-state re-

gression is an appropriate null hypothesis. We also use a

climatological USDM state PDF (i.e., one that is

independent of time) to form the state predictor by the

method described in section 3d. This null hypothesis is

also no better than the no-state regression.

We have also calculated the BSS only during times

when the USDM is in the abnormally dry category or

more intense. The BSS in this restricted case is compa-

rable to the full BSS (not shown), which says that the

USDM state information is useful even when the

USDM is not in the broad no drought category.

Next, the skill of the predictions is assessed using re-

liability diagrams (Wilks 2011). A ‘‘reliable’’ forecast

means that, given a large number of individual cases

when we predict a 60% chance of drought in-

tensification, the actual USDM drought depiction will

intensify 60% of the time and will not intensify during

the remaining 40%. In a reliability diagram (e.g., Fig. 6),

the observed probability (y axis) is plotted as a function

of the predicted probability (x axis). Thus, for a perfectly

reliable forecast, the points on the diagram would lie

along the y5 x line. For these reliability scatterplots, the

data are divided into 20 bins (see Part I formore details).

To help eliminate noise, the individual reliability dia-

grams at each grid point are averaged over the

FIG. 6. (a) Reliability diagram for the probabilistic USDM forecasts for each forecast period (colors). The x axis is

the predicted probability and the y axis is the probability from the observedUSDM record. For an ideal fit, the points

should lie on the y5 x line (black). To reduce noise, the probabilities are averaged over the northwestern quarter of

the United States. (b) As in (a), but for the northeastern quarter of the United States. (c) As in (a), but for the

southwestern quarter of the United States. (d) As in (a), but for the southeastern quarter of the United States.
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northwestern, southwestern, northeastern, and south-

eastern portions of the contiguous U.S. domain (see

figure titles for the boundaries of the domains). The

different colors denote the reliability diagrams for the

2-, 4-, and 8-week forecast time periods.

Figure 6 shows reliability diagrams for data that have

not been cross validated. This allows us to examine the

maximum reliability of the method because, in this case,

the model is trained on the same data used to calculate

the reliability diagram. The reliability diagrams are very

good, with points falling very close to the y 5 x line,

demonstrating that the logistic regression with the ca-

nonical logistic ‘‘link function’’ captures the dependence

of the probability on the predictors. The corresponding

cross-validated reliability diagrams are shown in Fig. 7.

The 2- and 4-week forecasts are still quite good, al-

though the forecasts tend to be slightly overconfident:

the predicted probability is larger than the observed

probability for high-probability events and smaller than

the observed probability for low-probability events (i.e.,

the scatter intersects the y 5 x line but the slope is less

than one). The 8-week forecasts, on the other hand,

noticeably deteriorate when applied to independent

data. It appears that the 8-week time scale is ap-

proaching the limit of USDM predictability given cur-

rent and past conditions of the land state. In future work,

these forecasts will incorporate additional predictors

from actual climate model forecasts. While we expect

this information to improve these forecasts at all lead

times, perhaps the biggest improvement will occur for

longer forecast lead times when the current state has less

of an impact.

c. Predictors chosen

In this section we discuss the number and relative

importance of the various predictors used to predict

changes in the USDM. Figure 8a shows the number of

predictors with nonzero coefficients or weights for the

4-week forecasts, which are quite similar to the results

for 2- and 8-week forecasts (not shown). Throughout

much of the central and northeastern United States, at

least 12 predictors are chosen. In areas of the south-

western and the southeastern United States, as few as 6

predictors are chosen.

Figures 8b–h show the relative weight of the pre-

cipitation; ESI; 10-, 100-, and 200-cm NLDAS soil

moisture variables; the USDM state predictors; and the

mean seasonal cycle, respectively. For this comparison,

the contribution of all time lags (0, 1, 2, and 3 weeks) is

aggregated for each variable that usesmultiple time lags.

Because all predictors are standardized and all co-

efficients are positive (by construction), the relative

FIG. 7. As in Fig. 6, but for the cross-validated probabilities.
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weight for each variable is calculated by simply summing

over the coefficients from the nonnegative logistic re-

gression. Precipitation has the most weight in the Pacific

Northwest and in the central and southern Rocky

Mountains (Fig. 8b). It also has relatively large weight-

ing in the northeastern United States and the upper

Midwest. The ESI tendency has significantly less weight

than the precipitation (Fig. 8c), which is consistent with

FIG. 8. (a) The number of predictors with nonzero weights for nonnegative logistic regression. (b) Sum of the

weights involving precipitation. (c) Sumof the weights involving ESI tendency. (d) Sumof the weights involving the

0–10-cm soil moisture tendency from NLDAS. (e) As in (d), but for the top 0–100 cm. (f) As in (d), but for the top

0–200 cm. (g) Sumof theweights for theUSDMstate predictor. (h) Sumof theweights for the climatological annual

cycle predictor.
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the fact that ESI has only recently been used by the

USDM to estimate drought intensity. The ESI tendency

is used mostly in the central United States, perhaps be-

cause the USDM is focused on agricultural drought in

this region. ESI is important because, unlike pre-

cipitation, it takes into account the effect of warm

temperatures, high winds, and low relative humidity on

drought development. The shallow soil moisture ten-

dency (Fig. 8d) is most important in the eastern United

States, where it tends to be themost important of the soil

moisture predictors in regions that are susceptible to

flash droughts (e.g., Otkin et al. 2014). Between the two

deeper soilmoisture level tendencies, however, the 200-cm

soil moisture tendency has more weight (Figs. 8e,f).

Perhaps this is because the 100-cm layer is more closely

related to the 10-cm layer, which is already included as a

predictor. Unlike the other variables, the USDM state

predictor has weights that are both large and relatively

uniform across the country (Fig. 8g), demonstrating that

the USDM state information makes important contri-

butions everywhere. For the contributions of the pre-

cipitation, ESI, and soil moisture to the USDM state

predictor, see Fig. 4 of Part I. The mean seasonal cycle

also has relatively uniform but moderate weight

(Fig. 8h).

Figure 9 shows the domain-averaged weights as a

function of time lag for the five fields that depend on

time lag: precipitation, ESI, and NLDAS soil moisture

integrated to depths of 10, 100, and 200 cm. The short-

term (e.g., 2 and 4 weeks) variables for precipitation and

10-cm soil moisture tendency have similar, nearly linear

drop-offs from lag 0 to 3 weeks. Physically, the small lags

have more weight because they are closer to the verifi-

cation time. Because ESI is the tendency of a 4-week

composite, on the other hand, the lag 1 and 2 week

values are closely related to the lag 0 week value, and

therefore the weights are reduced for lag 1 and 2 weeks.

The deeper soil moisture variables are different in that

the weights do not peak at lag 0 weeks. The weights for

all forecast time periods (2, 4, and 8 weeks) are re-

markably similar, with the largest differences occurring

for precipitation. The differences for precipitation are

consistent with the difference in forecast lead time: for

example, the 2-week forecasts have more weight for the

most recent (lag 0 weeks) anomalies than the 4- and

8-week predictions.

d. Examples

In this subsection, the probabilities of intensification

from the logistic regression method are compared to

the observed occurrence of USDM intensification.

Figures 10–12 show comparisons during the beginning,

middle, and end of the growing season for the last

9 years of the period of record (2006–14) for the 4-week

forecasts, with all results being cross validated. The

panels come in pairs: Figs. 10–12 (top) show the ob-

served intensification and Figs. 10–12 (bottom) show

the probability of intensification from the logistic re-

gression. The observed plots are orange if the USDM

intensifies over the specified time period and white

otherwise. The spatial correlations between the ob-

served occurrence and the predicted probabilities are

shown in the title of the forecast panels (panels with a

blue title caption). These correlations are calculated in

the same way as Fig. 4. In some years the forecasts are

quite good, for example, the years 2007, 2008, and 2012

in the mid-May examples (Fig. 10). In general, it ap-

pears that the forecasts are best when a relatively large

portion of the domain experiences drought intensifi-

cation. Conversely, when the USDM does not depict

widespread drought intensification, the spatial corre-

lations tend to be weaker, for example, the years 2013

FIG. 9. Predictor weights as a function of time lag. Weights are averaged in space over the entire domain. (a) precipitation, (b) ESI

tendency, (c) 0–10-cm soil moisture tendency, (d) 0–100-cm soil moisture tendency, (e) 0–200-cm soil moisture tendency.
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FIG. 10. Comparison of USDM intensification and the cross-validated probabilities (i.e., the model has not been trained on the year

shown) for mid-May of the latest 9 years: (a) USDM intensification on 16 May 2006. Locations that intensify over 4 weeks are shown in

orange. (b) Probability of intensification over 4 weeks on 16 May 2006. The spatial correlation between USDM intensification and the

probabilities is shown. (c),(d) As in (a) and (b), but for 15May 2007. (e),(f) As in (a) and (b), but for 13May 2008. (g),(h) As in (a) and (b),

but for 12 May 2009. (i),(j) As in (a) and (b), but for 18 May 2010. (k),(l) As in (a) and (b), but for 17 May 2011. (m),(n) As in (a) and (b),

but for 15 May 2012. (o),(p) As in (a) and (b), but for 14 May 2013. (q),(r) As in (a) and (b), but for 13 May 2014.
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FIG. 11. As in Fig. 10, but for mid-July.
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FIG. 12. As in Fig. 10, but for mid-September.
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and 2014 in Fig. 10. Similar results hold for July

(Fig. 11): the years 2006–08 and 2011–12 have relatively

large areas with observed drought intensification, and

the spatial correlations are also relatively good. Con-

versely, the years 2009–10 and 2014 have a relatively

small amount of intensification and the spatial corre-

lations are weak. For the September results (Fig. 12),

the most notable result is that the forecasts seem less

skillful compared to May and July. This observation

holds up under closer scrutiny: first the warm season

(weeks 18–39) is divided into three nearly equal-length

subseasons. The cross-validated BSSs are then calcu-

lated separately for each subseason. Averaged over the

north-central United States where skill is highest (388–
468N, 878–1048W), the BSS is 0.24, 0.20, and 0.17 for the

early, middle, and late parts of the warm season, re-

spectively. Similar results are obtained for the domain-

averaged BSS and for the 2-week predictions. The

8-week predictions, on the other hand, have similar

skill for each subseason. The reasons for the seasonality

in skill are the subject of future work.

We also show examples of the time progression of the

probabilities of intensification together with the ob-

served USDM. First, the largest ‘‘flash drought’’ events

during the analysis period (May–September) are se-

lected based on the areas with the largest increase in the

USDM over the 2-, 4-, or 8-week time periods. The

analysis is performed over the U.S. climate divisions,

and thus the USDM values are averaged over the cli-

mate divisions first before selecting the largest increase.

The top five events are shown in Table 1. The DUSDM

column shows the number of categories of the increase

for each time period and can be a fractional value due to

the average over the climate division. The year, state,

and climate division of each event are also shown. Some

events appear in multiple time periods, such as the flash

drought in Wisconsin in 2012. Six events that are well

separated in space and time are chosen for the time

progression plots in Fig. 13 (boldface in Table 1).

Figures 13a–c document the expansion from south to

north of the drought of 2012. The drought began in

Arkansas near the end of May and reached peak in-

tensity by August (orange bars in Fig. 13a). In Nebraska,

the drought did not achieve the moderate drought cat-

egory until the end of June, and in Wisconsin this

threshold was not reached until July. The probabilities

of intensification for the 2-, 4-, and 8-week periods are

shown by the green, blue, and purple lines, respectively.

In general, the forecasts anticipate the drought devel-

opment several weeks before the USDM depicted

drought intensification, particularly for Wisconsin,

where probabilities began rising in May and eventually

reached about 90% two weeks before any significant

drought intensification occurred.

In the 2011 Oklahoma case, the forecasts do very well

anticipating the drought with very high probability a

month in advance. The Minnesota drought of 2006, on

the other hand, did not achieve the same level of cer-

tainty even though the timing of the probabilities is still

good. The Louisiana flash drought of September 2005

also did not achieve the same level of certainty. More-

over, the predicted probability of intensification nearly

reached the same magnitude earlier in the year when

little or no drought intensification occurred. When

looking at other weaker flash droughts (not shown), it

becomes evident that the forecasts tend to be better

when the events have greater amplitude and vice versa.

This is consistent with the spatial correlations in

Figs. 10–12, which were better whenmore of the country

was experiencing intensifying drought.

5. Conclusions

The development of probabilistic USDM drought

intensification forecasts over 2-, 4-, and 8-week time

periods are described. In this paper, the forecasts only

involve current and past conditions, but the method can

easily be generalized to include weather forecast model

output. Logistic regression is used to estimate the

probabilities. The predictors include the four most re-

cent weeks of precipitation, evapotranspiration (ESI)

time tendencies, and soil moisture time tendencies at

TABLE 1. The largest flash droughts in the record for the months May–September for the years 2001–14. The amplitude of a flash

drought is quantified by the largest increase in theUSDMaveraged over a climate division over a 2-, 4-, or 8-week time period. The change

in the average USDM, the year, the state, and the climate division are shown. Events in boldface are shown in more detail in Fig. 13.

2 weeks 4 weeks 8 weeks

Rank DUSDM Year State Division DUSDM Year State Division DUSDM Year State Division

1 2.51 2005 Louisiana 7 3.78 2012 Wisconsin 8 4.15 2012 Arkansas 5
2 2.12 2006 Minnesota 2 3.32 2012 Wisconsin 9 4.12 2011 Oklahoma 9

3 2.11 2012 Wisconsin 8 3.18 2012 Wisconsin 7 4.12 2012 Nebraska 5

4 2.10 2013 Arkansas 1 3.15 2012 Nebraska 3 4.05 2012 Oklahoma 2

5 2.07 2006 Alabama 8 3.00 2007 Missouri 6 4.05 2012 Oklahoma 3
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several depths. In addition, it is found that detailed in-

formation about the current state of the USDM adds

skill to the forecasts. The information on the state of the

USDM is derived from the probabilistic estimates of the

USDM category based on SPI, ESI, and soil moisture

anomalies as described in Part I. This additional USDM

state predictor quantifies the ‘‘distance’’ to the next-

higher drought category. This adds skill because

FIG. 13. Time series of probability of intensification for the 2- (green), 4- (blue), and 8-week (purple) forecasts

and the observed USDM (orange bars) averaged over climate division. The probability axis runs from 0 to 1 (left y

axis) and the USDM axis runs from no drought (none), abnormally dryD0, moderate droughtD1, severe drought

D2, extreme droughtD3, and exceptional droughtD4 (right y axis). (a)Division 5 inArkansas in 2012, (b) division 5

in Nebraska in 2012, (c) division 8 in Wisconsin in 2012, (d) division 9 in Oklahoma in 2011, (e) division 2 in

Minnesota in 2006, and (f) division 7 in Louisiana in 2005.
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locations that are close to the next USDM drought

category are more likely to intensify than states that are

far from the next drought category. Finally, a predictor

based on the climatological seasonal cycle of USDM

intensification is used.

The method shows skill over most of the United

States: cross-validated BSSs are greater than zero for

90%, 93%, and 96% of the domain for the 2-, 4-, and

8-week predictions, respectively. The method is most

skillful over the north-central United States, where the

cross-validated BSS average is 0.20 for both 2- and

4-week forecasts. The 8-week forecasts are less skillful in

most locations. The 2- and 4-week probabilities have

very good reliability. The 8-week probabilities, on the

other hand, are noticeably overconfident.

Examples of the probabilistic forecasts are shown for

the beginning, middle, and end of the growing season for

2006–14. The spatial correlations between the proba-

bilities and the observed occurrence of intensification

show that the method tends to be most skillful when

large areas of the United States are experiencing in-

tensifying drought. When few regions are intensifying,

on the other hand, forecast skill is smaller. Example time

series from the most intense flash droughts in the record

are also shown. Consistent with Otkin et al. (2014,

2015a), the method typically does very well anticipating

these high-amplitude events a month or more in

advance.

The results described here define a baseline skill level

that can be improved upon using climate model forecast

output. Thus, future work will develop new methods to

combine predictions from the method presented in this

paper with model forecast data from the North Ameri-

can Multi-Model Ensemble to further increase the ac-

curacy of the USDM drought intensification forecasts.

We will also explore additional ways to improve the

predictions based on recent anomalies. For example, the

USDM categorizes droughts as short- and/or long-term

droughts. If the method in Part I can be extended to

separate these droughts, then skill might improve be-

cause short-term droughts are more likely to intensify

over subseasonal times scales than long-term droughts.

Acknowledgments. This work was supported by funds

provided by the NOAA Climate Program Office’s Mod-

eling, Analysis, Predictions, and Projections (MAPP)

program under Grant NA14OAR4310226.

REFERENCES

Anderson, M. C., J. M. Norman, G. R. Diak, W. P. Kustas, and

J. R. Mecikalski, 1997: A two-source time-integrated model

for estimating surface fluxes using thermal infrared remote

sensing. Remote Sens. Environ., 60, 195–216, doi:10.1016/

S0034-4257(96)00215-5.

——,——, J. R. Mecikalski, J. A. Otkin, andW. P. Kustas, 2007: A

climatological study of evapotranspiration and moisture stress

across the continental United States based on thermal remote

sensing: 1. Model formulation. J. Geophys. Res., 112, D10117,

doi:10.1029/2006JD007506.

Barros, A. P., and G. J. Bowden, 2008: Toward long-lead opera-

tional forecasts of drought: An experimental study in the

Murray–Darling River basin. J. Hydrol., 357, 349–367,

doi:10.1016/j.jhydrol.2008.05.026.

Bell, V.A., H. N.Davies, A. L. Kay, T. J.Marsh, A. Brookshaw, and

A. Jenkins, 2013: Developing a large-scale water-balance ap-

proach to seasonal forecasting:Application to the 2012 drought

in Britain. Hydrol. Processes, 27, 3003–3012, doi:10.1002/

hyp.9863.

Dobson, A. J., and A. Barnett, 2008: An Introduction to General-

ized Linear Models. CRC Press, 320 pp.

Dutra, E., and Coauthors, 2014: Global meteorological drought—

Part 2: Seasonal forecasts. Hydrol. Earth Syst. Sci., 18, 2669–

2678, doi:10.5194/hess-18-2669-2014.

Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce, 2000: Improved

United States precipitation quality control system and

analysis. NCEP/Climate Prediction Center Atlas 7, NOAA,

40 pp. [Available online at http://www.cpc.ncep.noaa.gov/

research_papers/ncep_cpc_atlas/7/toc.html.]

Hoerling,M., J. Eischeid, A. Kumar, R. Leung, A.Mariotti, K.Mo,

S. Schubert, and R. Seager, 2014: Causes and predictability of

the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95,

269–282, doi:10.1175/BAMS-D-13-00055.1.

Hunt, E., M. Svoboda, B. Wardlow, K. Hubbard, M. J. Hayes, and

T. Arkebauer, 2014: Monitoring the effects of rapid onset of

drought on non-irrigated maize with agronomic data and

climate-based drought indices. Agric. For. Meteor., 191, 1–11,

doi:10.1016/j.agrformet.2014.02.001.

Hwang, Y., and G. Carbone, 2009: Ensemble forecasts of drought

indices using a conditional resampling technique. J. Appl.

Meteor., 48, 1289–1301, doi:10.1175/2009JAMC2071.1.

Kim, T. W., J. B. Valdes, and C. Yoo, 2003: Nonparametric approach

for estimating returnperiods of droughts in arid regions. J.Hydrol.

Eng., 8, 237–246, doi:10.1061/(ASCE)1084-0699(2003)8:5(237).

Kirtman, B. P., and Coauthors, 2014: The North American

Multimodel Ensemble: Phase-1 seasonal-to-interannual

prediction; Phase-2 toward developing intraseasonal pre-

diction. Bull. Amer. Meteor. Soc., 95, 585–601, doi:10.1175/

BAMS-D-12-00050.1.

Kumar, A., M. Chen, M. Hoerling, and J. Eischeid, 2013: Do ex-

treme climate events require extreme forcings?Geophys. Res.

Lett., 40, 3440–3445, doi:10.1002/grl.50657.

Lorenz, D. J., J. A. Otkin, M. Svoboda, C. R. Hain, M. C.

Anderson, and Y. Zhong, 2017: Predicting U.S. Drought

Monitor states using precipitation, soil moisture, and

evapotranspiration anomalies. Part I: Development of a

nondiscrete USDM index. J. Hydrometeor., 18, 1943–1962,

doi:10.1175/JHM-D-16-0066.1.

Luo, L., E. F. Wood, and M. Pan, 2007: Bayesian merging of

multiple climate model forecasts for seasonal hydrological

predictions. J. Geophys. Res., 112, D10102, doi:10.1029/

2006JD007655.

McEvoy, D. J., J. L. Huntington, J. F. Mejia, and M. T. Hobbins,

2016: Improved seasonal drought forecasts using reference

evapotranspiration anomalies. Geophys. Res. Lett., 43, 377–

385, doi:10.1002/2015GL067009.

JULY 2017 LORENZ ET AL . 1981

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/12/21 06:33 PM UTC

http://dx.doi.org/10.1016/S0034-4257(96)00215-5
http://dx.doi.org/10.1016/S0034-4257(96)00215-5
http://dx.doi.org/10.1029/2006JD007506
http://dx.doi.org/10.1016/j.jhydrol.2008.05.026
http://dx.doi.org/10.1002/hyp.9863
http://dx.doi.org/10.1002/hyp.9863
http://dx.doi.org/10.5194/hess-18-2669-2014
http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/toc.html
http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/toc.html
http://dx.doi.org/10.1175/BAMS-D-13-00055.1
http://dx.doi.org/10.1016/j.agrformet.2014.02.001
http://dx.doi.org/10.1175/2009JAMC2071.1
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:5(237)
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1002/grl.50657
http://dx.doi.org/10.1175/JHM-D-16-0066.1
http://dx.doi.org/10.1029/2006JD007655
http://dx.doi.org/10.1029/2006JD007655
http://dx.doi.org/10.1002/2015GL067009


Meinshausen, N., 2013: Sign-constrained least squares estimation

for high-dimensional regression. Electron. J. Stat., 7, 1607–

1631, doi:10.1214/13-EJS818.

Mishra, V. R., and A. K. Desai, 2005: Drought forecasting using

stochastic models. Stochastic Environ. Res. Risk Assess., 19,

326–339, doi:10.1007/s00477-005-0238-4.

——, and ——, 2006: Drought forecasting using feed-forward re-

cursive neural network. Ecol. Modell., 198, 127–138,

doi:10.1016/j.ecolmodel.2006.04.017.

Mo, K. C., and B. Lyon, 2015: Global meteorological drought pre-

diction using the North American Multi-Model Ensemble.

J. Hydrometeor., 16, 1409–1424, doi:10.1175/JHM-D-14-0192.1.

Mozny,M., M. Trnka, Z. Zalud, P. Hlavinka, J. Nekovar, V. Potop,

andM.Virag, 2012: Use of a soil moisture network for drought

monitoring in the Czech Republic. Theor. Appl. Climatol.,

107, 99–111, doi:10.1007/s00704-011-0460-6.

Otkin, J. A., M. C. Anderson, C. Hain, I. Mladenova, J. Basara, and

M. Svoboda, 2013: Examining flash drought development using

the thermal infrared based evaporative stress index.

J. Hydrometeor., 14, 1057–1074, doi:10.1175/JHM-D-12-0144.1.

——, ——, ——, and M. Svoboda, 2014: Examining the relation-

ship between drought development and rapid changes in the

evaporative stress index. J. Hydrometeor., 15, 938–956,

doi:10.1175/JHM-D-13-0110.1.

——, ——, ——, and ——, 2015a: Using temporal changes in

drought indices to generate probabilistic drought in-

tensification forecasts. J. Hydrometeor., 16, 88–105,

doi:10.1175/JHM-D-14-0064.1.

——, and Coauthors, 2015b: Facilitating the use of drought early

warning information through interactions with agricultural

stakeholders. Bull. Amer. Meteor. Soc., 96, 1073–1078,

doi:10.1175/BAMS-D-14-00219.1.

Özger, M., A. K. Mishra, and V. P. Singh, 2012: Long lead time

drought forecasting using a wavelet and fuzzy logic combina-

tion model: A case study in Texas. J. Hydrometeor., 13, 284–

297, doi:10.1175/JHM-D-10-05007.1.

Pan, M., X. Yuan, and E. F. Wood, 2013: A probabilistic frame-

work for assessing drought recovery. Geophys. Res. Lett., 40,

3637–3642, doi:10.1002/grl.50728.

Quan, X.-W.,M. P.Hoerling, B. Lyon,A. Kumar,M.A. Bell,M.K.

Tippett, and H. Wang, 2012: Prospects for dynamical pre-

diction of meteorological drought. J. Appl. Meteor. Climatol.,

51, 1238–1252, doi:10.1175/JAMC-D-11-0194.1.

Sen, Z., and V. K. Boken, 2005: Techniques to predict agricultural

droughts. Monitoring and Predicting Agricultural Drought,

V. K. Boken,A. P. Cracknell, andR. L. Heathcote, Eds., Oxford

University Press, 40–54.

Slawski, M., and M. Hein, 2013: Non-negative least squares for

high-dimensional linear models: Consistency and sparse re-

covery without regularization. Electron. J. Stat., 7, 3004–3056,

doi:10.1214/13-EJS868.

Steinemann, A., 2003: Drought indicators and triggers: A sto-

chastic approach to evaluation. J. Amer.Water Resour. Assoc.,

39, 1217–1233, doi:10.1111/j.1752-1688.2003.tb03704.x.

Svoboda, M., and Coauthors, 2002: The Drought Monitor.

Bull. Amer. Meteor. Soc., 83, 1181–1190, doi:10.1175/

1520-0477(2002)083,1181:TDM.2.3.CO;2.

Thober, S., R. Kumar, J. Sheffield, J. Mai, D. Schäfer, and

L. Samaniego, 2015: Seasonal soil moisture drought pre-

diction over Europe using the North American Multi-

Model Ensemble (NMME). J. Hydrometeor., 16, 2329–

2344, doi:10.1175/JHM-D-15-0053.1.

Wilhite, D. A., andM. H. Glantz, 1985: Understanding the drought

phenomenon: The role of definitions. Water Int., 10, 111–120,
doi:10.1080/02508068508686328.

Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences.

3rd ed. International Geophysics Series, Vol. 100, Academic

Press, 704 pp.

Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier,

2002: Long range experimental hydrologic forecasting for the

easternUnited States. J. Geophys. Res., 107, 4429, doi:10.1029/
2001JD000659.

Xia, Y.,M. B. Ek,H.Wei, and J.Meng, 2012a: Comparative analysis

of relationships between NLDAS-2 forcings and model out-

puts. Hydrol. Processes, 26, 467–474, doi:10.1002/hyp.8240.
——, and Coauthors, 2012b: Continental-scale water and energy

flux analysis and validation of the North American Land Data

Assimilation System project phase 2 (NLDAS-2): 1. In-

tercomparison and application of model products. J. Geophys.

Res., 117, D03109, doi:10.1029/2011JD016048.

Yuan, X., and E. F. Wood, 2013: Multimodel seasonal forecasting

of global drought onset. Geophys. Res. Lett., 40, 4900–4905,
doi:10.1002/grl.50949.

——, ——, N. W. Chaney, J. Sheffield, J. Kam, M. Liang, and

K. Guan, 2013a: Probabilistic seasonal forecasting of African

drought by dynamic models. J. Hydrometeor., 14, 1706–1720,
doi:10.1175/JHM-D-13-054.1.

——, ——, J. K. Roundy, and M. Pan, 2013b: CFSv2-based seasonal

hydroclimatic forecasts over the conterminous United States.

J. Climate, 26, 4828–4847, doi:10.1175/JCLI-D-12-00683.1.

1982 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/12/21 06:33 PM UTC

http://dx.doi.org/10.1214/13-EJS818
http://dx.doi.org/10.1007/s00477-005-0238-4
http://dx.doi.org/10.1016/j.ecolmodel.2006.04.017
http://dx.doi.org/10.1175/JHM-D-14-0192.1
http://dx.doi.org/10.1007/s00704-011-0460-6
http://dx.doi.org/10.1175/JHM-D-12-0144.1
http://dx.doi.org/10.1175/JHM-D-13-0110.1
http://dx.doi.org/10.1175/JHM-D-14-0064.1
http://dx.doi.org/10.1175/BAMS-D-14-00219.1
http://dx.doi.org/10.1175/JHM-D-10-05007.1
http://dx.doi.org/10.1002/grl.50728
http://dx.doi.org/10.1175/JAMC-D-11-0194.1
http://dx.doi.org/10.1214/13-EJS868
http://dx.doi.org/10.1111/j.1752-1688.2003.tb03704.x
http://dx.doi.org/10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2
http://dx.doi.org/10.1175/JHM-D-15-0053.1
http://dx.doi.org/10.1080/02508068508686328
http://dx.doi.org/10.1029/2001JD000659
http://dx.doi.org/10.1029/2001JD000659
http://dx.doi.org/10.1002/hyp.8240
http://dx.doi.org/10.1029/2011JD016048
http://dx.doi.org/10.1002/grl.50949
http://dx.doi.org/10.1175/JHM-D-13-054.1
http://dx.doi.org/10.1175/JCLI-D-12-00683.1

